RL-PROTECT Multicurve feeder protection relay #### 1. INTRODUCTION RL-PROTECT is a digital relay designed to offer a complete over-current protection for DC metro and railways feeders. RL-PROTECT is connected to isolated transducers to monitor the feeder current and voltage. A large panel of customizable conditions allows exhaustive detection of different types of line faults. The RL-PROTECT associates performant faults detection, oscilloperturbography and system history recording. A modern and intuitive man-machine interface allows easy use of the RL-PROTECT. #### 2. MEASURED MAGNITUDES - The line current is measured by means of an isolated CT installed on the busbar. Current measurement is unidirectional or bidirectional. - The line voltage (optional) is measured by means of an isolated resistive divider. #### 3. TRIGGER CONDITIONS ## 3.1 I-dependent conditions For each current direction, the user is able to customize the various faults detection algorithms available : ♦ di/dt detection di/dt analysis allows detecting long distance and/or resistive short-circuits. di/dt analysis allows efficient discrimination between line faults and inrush currents produced by traction equipment. Delta I condition The analysis of Delta I condition allows the quick detection of short or medium distance short-circuits. The analysis is based on the evolution of the current versus time. Overcurrent condition Time delayed detection of maximum current. ## 3.2 V-dependent conditions ♦ Undervoltage condition Time delayed detection of minimum voltage. ♦ Overvoltage condition Time delayed detection of maximum voltage. # 3.3 Temperature-dependent conditions ♦ Thermal image The thermal image of the catenary supply cable is computed to protect the plastic cables against overheating. ♦ Breakure Failure Detection A specific monitoring of leak current is performed after breaking order to ensure the correct operation of the switchgear. Breaker failure dectection allows to open upstream / downstream protection. #### 4. OUTPUT RELAY Interfacing to the HV switchgear, the output relay gives the breaking order. #### 5. DIGITAL INPUTS - ♦ 110/48 Vdc DI allow the RL-PROTECT to : - Monitor the HV switchgear position - Switch between different sets of parameters (see Setup and Maintenance) #### **6. DIGITAL OUTPUTS** #### 110VDC DO allow to: - Monitor the breaking relay position - Monitor the alarm status - Monitor the watchdog status - Monitor the working set of parameters - Monitor a breaker failure alarm #### 7. SETUP AND MAINTENANCE #### Configuration Two sets of parameters are available and are selectable according to the electrical configuration of catenaries. #### Supervision Logbook: every action is recorded and timestamped with a millisecond accuracy. Oscillo-perturbography: when a fault occurs, I, di/dt and V curves are recorded in non-volatile memory. The last 40 events are kept in memory. ## Password protection Different access levels are granted depending on the user's privileges. Read-only and Read-modify access is protected by a configurable password. #### 8. USER INTERFACE ### Local configuration An interface composed of an LCD display and a keypad allow the user to configure the RL-PROTECT and view the logbook. #### Local supervision A graphical user interface (GUI) running under WindowsTM is also available. The graphical interface allows, in addition to the functionalities granted by the LCD display, to exploit the data collected by the perturbography. #### Remote supervision Modbus RTU protocol is available through one RS-485 fieldbus. A complete remote supervision is possible by a substation automaton or a control centre. #### 9. COMMUNICATION RS-232: one RS-232 DTE serial line is available on the SUB-D9 connector located on the equipment front panel. It supports local supervision. RS-485 : one RS-485 2 or 4 wires fieldbus is available on the lower connection panel and supports remote supervision. #### 10. DETAILED CHARACTERISTICS #### **Mechanics** ♦ L x D x H (in mm) 250 x 135 x 135 (bottom connectors not included) Fixing 2 anchors for symmetrical rail DIN Connectors located on the lower part ♦ Weight 2,2 kg ## **Power supply** ♦ Input voltage range 110 Vdc version: 50-150 Vdc 48 Vdc version: 15-65 Vdc Power consumption < 15 Watts ## Measured inputs (secondary side) ◆ Current measurement input +/- 10V Voltage measurement input +/- 10V or optical fiber Tests pointson front panel ## **Current probe** Catenary current different models available until ±20.000A Supported probe type open-type sensor (Hall effect) closed-type sensor (Hall effect) • shunt + isolated amplifier • instantaneous reading on the display • Fiber optic insulated resistive divider Probe offset monitoring integrated ## Voltage probe Catenary voltage For 750V, 1.5kV and 3kV DC network ◆ Probe type◆ Primary (MV) powered ## Microprocessor ♦ Frequency 29.4912 MHz ◆ Flash memory 512 kB◆ Non-volatile memory 128 kB ♦ Integrated logic Watchdog, real time calendar #### **ADC** section ♦ Accuracy 12 bits♦ Number of channels 8 Filtering Filtering Filtering To Hz and harmonics rejection To Hz and harmonics rejection ## **Digital inputs** ♦ Nominal voltage 110 Vdc or48 Vdc version ◆ Typical current 6 mA nominal ## **Digital outputs** ♦ Voltage Max 300 Vdc/240 Vac Typical current 200mA ## **Breaking relay** ◆ Voltage 110 Vdc◆ Current 8A ◆ Breaking capacity 8A (on inductive load) ♦ Polarity NO NC #### **HMI** interface ♦ Keypad 20 keys ♦ LCD display♦ Backlight4 x 20 charactersAdjustable contrast ## Dielectric rigidity (50Hz, 1 min) ◆ Power supply ◆ Digital inputs ◆ Digital outputs ◆ Breaking relay 2.5 kV_{eff} 2.5 kV_{eff} #### **Standards** CEI 60850 Railway applications—Supply voltages of traction systems ♦ EN 50121-5 Railway applications—Electromagnetic compatibility— Part 5: Emission and Immunity of fixed power supply installations and apparatus ♦ IEC 60255-5 Electrical Relays—Part 5: Insulation coordination for measuring relays and protection equipment—Requirements and tests ♦ EN 50123-7-1, -2, -3 Measurement, control and protection devices for specific use in d.c. traction systems EN 61000-4-2 Electrostatic Discharges immunity ♦ EN 61000-4-3 Radiated immunity EN 61000-4-4 Electrical Fast Transients immunity EN 61000-4-5 EN 61000-4-6 EN 61000-4-8 Surges immunity Conducted immunity Magnetic field immunity EN 61000-4-12 Oscillatory waves immunity